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Introduction

This is a biased survey of some results related to Hopf Galois
structures on Galois extensions of fields.
They were first defined by Steve Chase and Moss Sweedler and
published in 1969, 50 years ago.
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Galois theory

Let K be a field, L be field containing K and has dimension n as a
K -vector space: [L : K ] = n, and suppose L is normal and separable
over K : that means, L is the splitting field of some polynomial in K [x ]
with no repeated roots in an algebraic closure of K . Then the group G
of K -algebra automorphisms of L, called the Galois group of L/K , has
order n, and the fixed field of G,

K = LG = {x ∈ L|g(x) = x for all g ∈ G},

the fixed field of L under the action of G.

The Fundamental Theorem of Galois Theory is that the function from
the set of subgroups G′ of G to the set of fields E with K ⊆ E ⊆ L,
given by G′ 7→ LG′

, is one-to-one and onto.
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Galois theory and module theory

Galois theory dates from the 1830s, but it took over a century before E.
Artin [Ar42] described the theory in module-theoretic terms. The idea
is that if L/K is a Galois extension with Galois group G, then L
becomes a module over the group ring K [G].
Here is a condition for L/K to be a G-Galois extension:
• The map j : L[G]→ EndK (L) given by j(sg)(x) = sg(x) for s, x in L,
g in G, is an isomorphism of K -vector spaces: the elements of G can
be viewed as linear transformations on L, and every K -linear
transformation on L can be written as a K -linear combination of
elements of G.
One example of a purely module-theoretic result in Galois theory is the
Normal Basis Theorem [Ar42, Theorem 28]: Let L/K be a Galois
extension of fields with Galois group G. Then there is an element s in
L so that as a K -vector space, {g(s)|g ∈ G} is a K -basis of L.
This translates to: L is a free KG-module of rank one.
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Linear duals

Hopf algebras arose in topology around 1941, and began to be studied
in algebra in the 1960’s. To define Hopf algebras, it is convenient to
first recall the linear dual of a module.
Let R be a commutative ring, M, N projective R-module of finite rank,
and let M∗ = HomR(M,R), the linear dual of M.
If f : M → N is a R-module homomorphism, then f induces
f ∗ : N∗ → M∗ by

f ∗(φ) : M → R is φ ◦ f : M → N → R

for φ in N∗.
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Bialgebras

For a commutative ring R, define an R-bialgebra H to be an R-algebra,
finitely generated and projective as an R-module (hence has a
multiplication m : H ⊗R H → H and a unit map i : R → H mapping 1R
to 1H ). We also assume that H has a comultiplication ∆ : H → H ⊗R H
and a counit map ε : H → R so that the induced maps
∆∗ : H∗ ⊗R H∗ → H∗ and ε∗ : R → H∗ make H∗ into an R-algebra. In
particular, ∆∗ is associative, hence ∆ : H → H ⊗ H is “coassociative”.
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An example is a group ring RG for G a finite group. The counit is
defined by ε(g) = 1 for all g in G, and the comultiplication map ∆ is
defined by ∆(g) = g ⊗ g.
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Hopf algebras

A group ring RG also has a “coinverse” map, or “antipode”
s : RG→ RG by s(g) = g−1. Recalling that ∆(g) = g ⊗ g for g in G,
then gg−1 = 1 for g in G is the relation: m(1⊗ s)∆(g) = 1 = iε(g).
Generalizing, a R-Hopf algebra H is a bialgebra with an antipode map
s, that is, an antihomomorphism: s : H → H satisfying
m(1⊗ s)∆(h) = 1 = iε(h) for all h in H.
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Hopf Galois extensions

Back to L/K a field extension. If G is the Galois group of L/K , then
because G acts as automorphisms of L, g(st) = g(s)g(t) and g(1) = 1
for g in G, a,b in L. This idea generalizes to the concept that if L is an
H-module, then L is an H-module algebra if

h(ab) = m(∆(h)(a⊗ b)), h(1) = ε(h) · 1.

Then L/K is an H-Hopf Galois extension if L is an H-module algebra
and the condition:
• The map j : L⊗H → EndK (L) given by j(s⊗ h)(x) = sh(x) for s, x in
L, g in G, is an isomorphism of K -vector spaces.
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The Galois correspondence

For L/K Hopf Galois with Hopf algebra H, Chase and Sweedler
obtained a Galois correspondence from K -sub-Hopf algebras J of H to
intermediate fields by: J maps to the “fixed field”

LJ = {s ∈ L|h(s) = ε(h)(s) for all h in J}.

Then dimK J = dim(LJ)L.
The Galois correspondence is one-to one, but, in contrast to classical
Galois theory, C-S could not show onto (because it is usually not true).
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Motivation

Chase and Sweedler’s motivation for [CS69] “was a hope that results
of this type should shed some light on inseparable extensions of fields
and ramified extensions of rings”. It seems to have more potential in
the latter than the former, as we’ll see. But the theory does apply to
purely inseparable extensions: see [Koc14].
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Ramification

A global field is a finite extension K of the rational numbers Q. The ring
of integers OK of K is the set of all elements a of K that are roots of
monic polynomials with coefficients in Z. OK is a Dedekind domain:
every ideal of OK factors uniquely into a product of prime ideals of OK .
Let L be a finite extension of K . If p is a prime ideal of O, then the ideal
pOL factors uniquely into a product of prime ideals of OL:

pOL = Pe1
1 · · ·P

eg
g .

The prime ideal p of OK ramifies in L if some ei > 1. Each prime ideal
p of K contains a unique rational prime p. Then p ramifies tamely if all
of the exponents ei are coprime to p, while if p divides some ei , then p
ramifies wildly. Thus an extension L/K of global fields is unramified if
no prime of OK ramifies in OL (that is, all ei = 1), tamely ramified if no
prime of OK ramifies wildly in OL, and wildly ramified otherwise.
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Local fields

For each prime number p, one can construct the p-adic integers Zp
and the p-adic rational numbers Qp. The ring Zp has a unique prime
ideal (p), and there is a p-adic valuation on elements of Zp: vp(a) is
the smallest power of the ideal (p) that contains a.

A finite extension K of Qp is called a local field, and the p-adic
valuation extends to K , so that OK also has a unique prime ideal pK .
If L/K is a finite extension of local fields, then pKOL = p

ep
L for some

exponent ep. Then L/K is unramified if ep = 1, tamely ramified if ep
and p are coprime, and wildly ramified if p divides ep. So ideal theory
for extensions of local fields is quite a bit less cluttered than for
extensions of global fields.
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Galois module theory

The Normal Basis Theorem is the paradigm for Galois module theory.
If L/K is a Galois extension of fields with Galois group G, then L is a
free KG-module of rank 1. It goes back at least to Hilbert (1897).
The first important result in local Galois module theory was by Emmy
Noether [No31]: let L/K be a Galois extension of local fields with
Galois group G. Then OL is a free rank one OK [G]-module if and only
if L/K is tamely ramified. If L/K is wildly ramified, one can still try to
understand OL as an OK [G]-module, but it is very difficult, as Elder can
attest, and the results are not so elegant.
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Associated orders

Instead, define the associated order A = AG of OL in K [G]:

AG = {a ∈ K [G] : aOL ⊆ OL},

then AG contains OK [G] and AG = OK [G] if and only L/K is tamely
ramified.
So the idea is to try to understand OL as an AG-module.
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Some results

The earliest result was a global result by Leopoldt [Le59]: if L is an
abelian Galois extension of K = Q, then OL is a free module of rank
one as an AG-module. But that result is not valid if one omits “abelian”
or “K = Q”.
In [CH86] Hurley and I obtained a local result: if L is a Galois extension
of the local field K and the associated order AG is a Hopf order in KG,
then OL is a free AG-module of rank one. In [CM94] this was extended
to L/K an H-Hopf Galois extension of local fields, where AG replaced
by the associated order AH in H.
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Byott’s examples

Suppose L/K is a wildly ramified Galois extension of local fields with
Galois group G, and L/K is also a Hopf Galois extension with K -Hopf
algebra H. Nigel Byott [By00], [By02], obtained examples where the
associated order AH is an OK -Hopf order and OL is AH -free of rank
one, but the associated order AG is not a Hopf order and OL is not
AG-free. I suspect he may describe some of this work in his talk. (His
20th century examples were a major motivation for writing [Ch00].)
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Some directions in local Galois module theory

These results have motivated research in several directions in local
Galois module theory:

Lindsay N. Childs University at Albany Hopf Galois extensions 18 / 48



I. Hopf orders

One is to try to understand the structure of Hopf orders AH , especially
when H = KG. This subject began with work of Tate and Oort in 1970
when G has order p and Raynaud in 1974 for elementary abelian
p-groups. The case where G has order p2 was completed by Greither
[Gr92], Byott [By93] and Underwood [Un94]. But the case for G of
order pn, n > 2 has remained wide open despite a lot of effort,
especially by Underwood, with contributions by Sauerberg,
Zimmermann, Greither, Smith, Koch, Elder, Byott, Tossici and me.
Underwood, Elder, and Tossici and his collaborators continue to work
on this problem. Underwood’s talk on Friday will discuss this problem
for n = 3, and Truman’s talk will relate to this topic.
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II. Structure of associated orders

Another is to try to determine a general structure of associated orders
AH in H (where A is not necessarily a Hopf order) that would permit a
determination of whether or not OL is free over AH , especially but not
exclusively when H = KG. This effort has led to the scaffold theory of
Elder and Byott, (see [BCE18]) and to “semi-stable” extensions of
Bondarko. The relationship between these theories has been
illuminated in recent work of Keating, who will give talks on this subject
today and Thursday.
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III, Non-classical Hopf Galois structures

A third is to try to determine the possible non-classical Hopf Galois
structures on a Galois extension L/K of fields. This is the direction I
know best. It has few algebraic number-theoretic prerequisites, but
rather ends up involving some deep group theory and some other
surprising ideas. So for the rest of this talk I will focus on this topic.
Byott’s talk on Wednesday will be in this area.

Lindsay N. Childs University at Albany Hopf Galois extensions 21 / 48



The Galois case

For the rest of this talk I’ll assume that any field extension L/K is
Galois with Galois group G. The theory extends to not necessarily
normal sub-extensions of Galois extensions, and there are a number
of interesting results on this subject, starting with [GP87]–see also
[Ch89], [By96], [Ko98] six papers within the past four years by Crespo
and her Barcelona collaborators, and recent work of Truman. But in
the interest of time, I’ll omit that generalization.
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Greither-Pareigis 1987

For L/K a G-Galois extension, [GP87] transformed the problem of
finding Hopf Galois structures into a problem in finite permutation
groups, namely: find regular subgroups N of Perm(G) normalized by
λ(G), the image in Perm(G) of the left regular representation map,
λ(g)(g′) = gg′.
A subgroup N of Perm(S) is a regular subgroup if for every s, t in S
there is a unique n in N so that n(s) = t . Thus |N| = |S|.

If N is also normalized by λ(G), then for sη in L, η in N,

(L[N])G = {
∑

sηη|
∑

sηη} = {
∑

g(sη)λ(g)ηλ(g−1) for all g ∈ G}

is a K -Hopf algebra that acts on L and L/K is H-Hopf Galois. The type
of H is the isomorphism type of the abstract group N.
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First examples

For G a non-abelian group, there are always at least two regular
subgroups of Perm(G), namely λ(G) and ρ(G), where ρ : G→ Perm(G)
is the right regular representation: ρ(g)(h) = hg−1. Then ρ(G) is
centralized by λ(G), so corresponds to the classical Hopf Galois
structure given by the Galois group. Not so for λ(G).
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The Galois correspondence

If L/K is a G-Galois extension and has an H-Hopf Galois structure,
then the FTGT for the H-action sends K -subHopf algebras of H to
intermediate fields of L/K . The K -subHopf algebras of H correspond
to the subgroups N ′ of N that are normalized by λ(G) [CRV16].
For example, for G non-abelian, λ(G) is a regular subgroup of
Perm(G), and the subgroups of λ(G) that are normalized by λ(G) are
the subgroups λ(N) where N is a normal subgroup of G. Thus the
image of the Galois correspondence consists of subfields E so that
E/K is a normal extension.
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Translation to the holomorph

For a group G of fairly large order n, finding regular subgroups of
Perm(G) normalized by λ(G) is not easy, because Perm(G) ∼= Sn is
large and has many subgroups. But [Ch89] observed that λ(G)
normalizes a regular subgroup N of Perm(G) if and only G is
(isomorphic to) a subgroup of the holomorph Hol(N) = λ(N) o Aut(N),
the normalizer in Perm(N) of λ(N). Byott, in [By96], took that
observation and turned it into a systematic way of counting Hopf
Galois structures of type N on a G-Galois extension L/K by counting
equivalence classes of regular homomorphisms from G into Hol(N).
Since Byott’s work, nearly all of the results on the existence or
non-existence of Hopf Galois structures have used the holomorph.
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Working in Perm(G)

The main exceptions to using the holomorph method are some results
of Crespo, Rio and Vela and their students, and work of Kohl.
Kohl [Ko98] completely classified the Hopf Galois structures on a
separable extension of odd prime power degree pn. In particular, he
showed that if L/K is Galois with Galois group G cyclic of order pn,
then every Hopf Galois structure on L/K has type G. He originally did
this within the Greither-Pareigis framework, but it is more routinely
done using the holomorph method: Byott proved [By96] that if N is a
non-cyclic group of order pn, then Hol(N) has no element of order pn,
so there can be no regular embedding of a cyclic group G of order pn

in Hol(N) for N non-cyclic of order pn.
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A converse to Kohl’s result

In [CS16], Crespo and Salguero proved a converse. Suppose L/K is
Galois with Galois group G of order pn, and has a Hopf Galois
structure of type N where N ∼= Cpn is cyclic. Then G must be cyclic.

The heart of their proof is to show that every regular subgroup of
Hol(Cpn ) must contain an element of order pn. Having done so, the
proof proceeds as follows. Suppose G is any group of order pn. If L/K
has a Hopf Galois structure of type Cpn , then there must be a regular
embedding β of G into Hol(Cpn ). Hence β(G) ∼= G of order pn is a
regular subgroup of Hol(Cpn ), and so must have an element of order
pn. Hence G must be cyclic.
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recent work of Kohl

Before leaving the Perm(G) setting, I want to talk about a neat result of
Kohl from last year [Ko18].

Theorem
Suppose L/K is Galois with Galois group G of order n. Suppose G has
no subgroup of order m. Let N be a group of order n, and suppose N
has a characteristic subgroup of order m. Then L/K cannot have a
Hopf Galois structure of type N.

Lindsay N. Childs University at Albany Hopf Galois extensions 29 / 48



Why?

Here is the idea. Suppose L/K has a Hopf Galois structure
corresponding to a subgroup M of Perm(G) of type N. Then the FTGT
for the Hopf Galois structure gives a one-to-one correspondence from
subgroups M1 of M that are normalized by λ(G) in Perm(G) to
intermediate fields E with K ⊆ E ⊆ L, by sending M1 to the
corresponding K -subHopf algebra H1 = LMG

1 , then to the
corresponding fixed field E = LH1 . Furthermore, |M1| = [L : E ].
If N has a characteristic subgroup of order m, then M ∼= N has a
characteristic subgroup M1 of order m, and so any automorphism of M
restricts to an automorphism of M1. In particular, M1 is normalized by
λ(G). So by the FTGT for Hopf Galois structures, there is an
intermediate subfield E with [L : E ] = m.

But if L/K is G-Galois and G has no subgroups of order m, then by the
classical FTGT, there are no subfields E with [L : E ] = m. So L/K
can’t have a Hopf Galois structure of type M.
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Examples?

A class of examples:

Theorem
Suppose G is a group of order n and for some m dividing n, G has no
subgroup of order m. Then a G-Galois extension cannot have a Hopf
Galois structure of cyclic type.

This is because every subgroup of a cyclic group is a characteristic
subgroup.
There are examples! Let G = An for n ≥ 4. Then G has no subgroups
of index 2.

The result generalizes easily: if for some m dividing |G| = |N|, the
number of characteristic subgroups of N of order m is larger than the
number of subgroups of G of order m, then a Galois extension with
Galois group G can have no Hopf Galois structures of type N.
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Using the holomorph

As noted, many of the deepest results on the existence or
non-existence of Hopf Galois structures on Galois extensions of fields
use the holomorph.
Here are some examples.
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Byott’s simple groups theorem

[By04] showed that if L/K is Galois with Galois group G a non-abelian
simple group, then any Hopf Galois structure must have type G.
Combining that with an earlier result [CC99], his result shows that
there are exactly two Hopf Galois structures on L/K .

His proof used the classification of finite simple groups to show that
there is no regular embedding of a simple group G into the holomorph
of a group of order |G| that is not isomorphic to G.
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Fixed point free pairs of homomorphisms

In [BC12] we introduced the idea of constructing Hopf Galois
structures by the method of fixed point free pairs of homomorphisms.
In its most general setting, let G = GLGR be a group with
complementary subgroups: this means, every element g of G has a
unique decomposition as g = gLgR with gL in GL, gR in GR. (G is a
“Zappa-Szep product”.) Then there is a regular embedding

GL ×GR → Hol(G) = λ(G) o Aut(G)

by g 7→ λ(gL)ρ(gR) where λ(gL)ρ(gR)(x) = gLxg−1
R .

Thus fixed point free pairs of homomorphisms yield Hopf Galois
structures of type G on a Galois extension with Galois group GL ×GR.
In particular, it shows that given a semi-direct product H o J of groups,
then a Galois extension with Galois group H × J has a Hopf Galois
structure of type H o J.
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Application to non-abelian Hopf Galois structures

As an example, [BC12] applied that idea to show that if G is any
non-cyclic abelian group of order pn, n ≥ 3, p ≥ 3, then a G-Galois
extension of fields has a Hopf Galois structure of non-abelian type.

The idea also lies behind [AB18]’s complete description of Hopf Galois
structures on a Galois extension L/K with Galois group cyclic of
square-free order n. If N is any group of order n, then N is a semidirect
product of cyclic groups. Thus:

Theorem
If L/K is Galois with Galois group G cyclic of square-free order n, then
every group of order n can be the type of a Hopf Galois structure on
L/K .

This is in sharp contrast to the cyclic of prime power order case.
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Composition factors

In [By15] Byott used the method of fixed point free pairs of
homomorphisms to find examples of G-Galois extensions L/K that
have Hopf Galois structures of type N where G and N have different
composition factors.
An example is to let N = Sn for n = 5, let H = Sn−1, the stabilizer of a
point, and let J be the cyclic group generated by any n-cycle in Sn.
Then H and J are complementary subgroups in Sn. Thus any Galois
extension with group G = Sn−1 × Cn admits a Hopf Galois structure of
type Sn. Since n = 5, Sn has the simple group An as a composition
factor, while G does not.
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Abelian Galois extensions have only Hopf Galois
structures of solvable type

Among the most sophisticated applications of the holomorph approach
thus far are in [By15]: Let L/K be a G-Galois extension of fields where
G is abelian. Then any Hopf Galois structure on L/K is of type N
where N is solvable.
One of his two proofs used the classification of finite simple groups.
The other applies a result of Li used in the solution of a 100 year old
problem of Burnside in permutation groups.
Byott’s talk on Wednesday may set a new standard of sophistication?
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Extending Kohl’s result for cyclic of order pn

Finally, we note a theorem of Featherstonhaugh [FCC12], namely: let
G be a finite abelian group of p-rank m. If L/K is Galois with Galois
group G and m + 1 < p, then any abelian Hopf Galois structure must
have type G. This generalizes the abelian part of Kohl’s result for cyclic
p-groups.
The inequality on m and p is necessary: see [Ch07].
The proof in [FCC12] used a result of Caranti [CVDS06] that if N is a
finite abelian p-group, written additively, then every regular subgroup of
Hol(N) is isomorphic to the group (N, ◦) induced from a structure
(N,+, ·) of a commutative, associative nilpotent ring on the additive
group (N,+), where a ◦ b = a + b + a · b.
That result was prescient.
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Meanwhile ...
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Braces

In 2007, W. Rump [Ru07] defined a left brace to be a set G with two
group operations, (G,+) and (G, ◦) where (G,+) is abelian, that
satisfy the single compatibility condition

a ◦ (b + c) = (a ◦ b)− a + (a ◦ c)

for all a,b, c in G. Given a left brace, one gets a solution of the
Yang-Baxter equation. See Nejabati Zenouz’s talk on Tuesday for more
on this connection?
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Radical rings

A radical ring is a finite ring A(+, ·) with the property that if the
operation ◦ is defined on A by a ◦ b = a + b + a · b, then (A, ◦) is a
group. Then the two groups (A,+) and (A, ◦) have a common identity,
0, and the set A(◦,+) is a left brace.

Examples are easy to find: for example, let x , y , z,u, v ,w be a basis
for A as a vector space over Fp, define xy = u, yz = v , zx = w and all
other products of the generators = 0. Then A3 = 0 and defining
a ◦ b = a + b + ab, the ◦-inverse a of a is −a + a2.

But there are left braces that do not arise from radical rings.
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skew braces

Skew braces were introduced in [GV17] as a non-commutative
generalization of the left braces of [Rum07]. Skew braces also yield
set-theoretic solutions of the Yang-Baxter equation.
But there is also a close connection between skew braces and Hopf
Galois structures on Galois extensions of fields.
• [CDVS06] found a relationship between abelian radical Fp-algebras
and regular subgroups of the affine group = the holomorph of (Fn

p,+).
• This was generalized to abelian radical rings and used in [FCC12].
• Bachiller in [Bac16] extended the connection in [FCC12] to a
connection between abelian Hopf Galois structures on Galois
extensions of fields and left braces.
• That relationship was further extended to skew braces and arbitrary
Hopf Galois structures by Byott and Vendramin in [SV18].
Skew braces have already been used to study Hopf Galois structures,
for example in [Ze18], [Ch18] and [Ch19].
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Regular representation maps

Associated to a set B with two group operations ◦ and ? are the two left
regular representation maps:

λ? :B → Perm(B), λ?(b)(x) = b ? x ,
λ◦ :B → Perm(B), λ◦(b)(x) = b ◦ x .

Then Guarneri and Vendramin [GV17, Proposition 1.9] showed:

Theorem
(B, ◦, ?) is a skew brace if and only if the group homomorphism
λ◦ : (B, ◦)→ Perm(B) has image in the holomorph
Hol(B, ?) = λ?(B)Aut(B, ?) of λ?(B) in Perm(B).
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Connecting skew braces with Hopf Galois structures

Let L/K be a Galois extension with Galois group G = (G, ◦). Hopf
Galois structures on L/K of a given type (G, ?) correspond by Galois
descent [GP87] to regular subgroups N of Perm(G) isomorphic to
(G, ?) and normalized by λ◦G.

Theorem
Let L/K be a Galois extension with group G = (G, ◦). Let H be a
K -Hopf algebra giving a Hopf Galois structure of type M on L/K . Then
(G, ◦) has a skew left brace structure with additive group (G, ?) ∼= M.

The idea is that H corresponds to a regular subgroup N of Perm(G).
So there is a bijection b : N → G by n 7→ n(e). This can be used to
define a new group operation on G by g ? h = b(b−1(g)b−1h)). Then
(G, ◦, ?) is a skew brace by the G-V Theorem.
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Conversely

Theorem
Let (G, ◦, ?) be a skew brace. Let L/K be a Galois extension with
Galois group (G, ◦). Then L/K has a Hopf Galois structure of type
(G, ?).

Proof.
Given the skew brace structure (G, ◦, ?) on the Galois group (G, ◦) of
L/K , we have by the G-V Theorem that λ◦(G) is contained in
Hol(G, ?), and so the subgroup N = λ?(G) ⊂ Perm(G) is normalized by
λ◦(G). Thus N corresponds by Greither-Pareigis theory to a Hopf
Galois structure on L/K of type (G, ?).
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Bachiller

Work on skew braces yields results on Hopf Galois structures.

For a notable example, [Bac16] found a group of order p10 and
exponent p for p > 12 that is not the circle group of a brace with
additive group an elementary abelian group of order p10. That is
equivalent to saying that there is a Galois extension with a Galois
group of order p10 and exponent p that has no Hopf Galois structure of
elementary abelian type.

One of Bachiller’s tools was to extend [FCC12] to show that if (B, ◦,+)
is a left brace of order pn where n + 2 ≤ p, and (B,+) is elementary
abelian, then (B, ◦) must be a group of exponent p.
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Today

So this is an exciting time to be working on Hopf Galois structures.
Vendramin posted a paper [Ven18] on arxiv.math in the summer of
2018 entitled “Problems on skew left braces” with a list of 50 problems.
A dozen or so relate to the existence or classification of skew braces
with additive and circle groups with various properties or sizes. And he
hardly mentioned Hopf Galois structures. The paper has a list of 69
references.
So suddenly we find our research on Hopf Galois structures to be of
interest to a much larger collection of mathematicians than we ever
imagined two years ago.
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Thank you!
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